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UNSTEADY FLOW OF A GAS INTO VACUUM THROUGH A 

PERFORATED PLATE 

L. G. Miller UDC 333.6,011.72 

The problem of the unsteady flow of a gas into vacuum through a perforated plate is 
solved within the framework of an approach developed earlier [I]. Two steady orifice flow 
schemes are used to close the relations at the perforation. The corresponding results of 
calculations are given for each scheme. The present model, unlike the one proposed in [2, 
3], preserves not only the mass flow of gas, but also its total enthalpy. 

We direct the x axis along the normal to the perforated plate, which coincides with the 
plane x = 0. It is represented by the hatched strip in Fig. la. At time t ~ 0 the half- 
space x < 0 is filled with an ideal gas at rest. To the right of the plate is vacuum. At 
time t = 0 the gas begins to flow through the perforation. In terms of its formulation this 
problem is similar to the problem of the decay of an arbitrary discontinuity at a perforated 
plate and can be solved within the framework of the approach developed in [I]. 

If d is a typical linear dimension of the perforation and D is a typical wave propaga- 
tion velocity, we can assume, as in [I], that for t >> d/D the flow through the perforation 

i 
pro>p-p+. 

x Mm= t 

Pig. I 
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is steady and for Ixl >> d the flow is one-dimensional and self-similar (the flow pattern is 
shown in Fig. la). Centered rarefaction waves propagate in both directions from the plate. 
The wave traveling to the left through the rest gas accelerates it. As a result, the gas to 
the left of the plate acquires a velocity u such that critical flow takes place in the mini- 
mum cross section of the perforation. In blocked flow regimes the steady isentropic inflow 
scheme and the relations satisfied at the centered wave uniquely determine the intensity of 
the rarefaction wave and the flow parameters both in the minimum flow-through cross section 
of the perforation and immediately in front of the plate. 

The outflow of gas into the domain x > 0 in the given situation is supersonic. A dis- 
tinctive feature of the wave structure formed in the investigated problem, in contrast with 
the schemes considered for supersonic flow regimes in [l], is the presence of only one wave, 
propagating to the right. The contact discontinuity corresponding in this case to the front 
of the outflowing gas is represented by the dashed line in Fig. la and coincides with the 
outermost characteristic curve of the flow, which moves with the maximum velocity uf. 

Let s = Sm/S be the degree of constriction of the perforation, equal to the ratio of the 
minimum area Sm of the "flow-through" cross section to the total area S of the plate, let p 
be the pressure, p the density, i the specific enthalpy, and s the specific entropy. We 
attach the index m to the parameters in the minimum flow-through cross section, and the index 
+ to the plate. We can then write the relations 

(pU)m8 = (pu)+, (2i + U2)m = (2i + U2)+, (1) 

which  a r e  u n i v e r s a l  and do n o t  depend on the  f low s t r u c t u r e  o b t a i n e d  i n  m i x i n g  and e q u a l i z a -  
t i o n  of  the  f l ow  a f t e r  the  p e r f o r a t i o n .  The f low reg ime  o f  i n t e r e s t  to  us i n  the  g i v e n  p r o b -  
lem o c c u r s  w i t h  c l o s e d  s e p a r a t i o n  zones .  F i g u r e  lb shows the  c o r r e s p o n d i n g  f low scheme 
t h r o u g h  an e l e m e n t  o f  t he  p l a t e .  As in  [ 1 ] ,  we o b t a i n  the  d e f i c i e n t  r e l a t i o n  f o r  t he  s y s t e m  
(1) in  two ways ,  f i r s t  by a d o p t i n g  the  h y p o t h e s i s  o f  i s e n t r o p i c  s u p e r s o n i c  e x p a n s i o n :  

s~  = s+ (2)  

and,  s e c o n d ,  s e t t i n g *  

p '  = p+, (3) 

where p' is the pressure acting on the right side of the plate. 

As noted in [|], for ~ ~0.05 the latter condition provides a better description of the 
experimental data on the sudden expansion of sonic flow. On the basis of (3) the condition 
of conservation of momentum in the x direction, written for the cross sections m and +, takes 
the form 

p+~ + p+u~ = ~ (p + 9 u )m. (4) 

Equations (I) and (4) augmented with the relations satisfied at the centered rarefaction 
wave can be used to determine the flow parameters to the right of the plate and the velocity 
of the outflowing gas front. 

The results of using the foregoing model to calculate the flow of an ideal gas with 

*In [I] the expression p' = pm in Eq. (I.I0) should read: p' = p+. 
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adiabatic exponents • = 1,4 and 1.2 through a perforated plate are shown in Figs. 2 and 3. 
All of the parameters shown are dimensionless; the velocity and density are referred to the 
sound velocity ao and density Po of the rest gas at t = 0, and the pressure to the quantity 

2 
p oao. 

Figure 2 shows the velocity of the gas to the right of the plate (in the domain +) as a 
function of the perforation ratio ~. The solid curves represent condition (3), and the 
dashed curves correspond to the isentropic flow hypothesis (2); for values of x = 1.2 and 
1.4, as e + 0 the latter curves arrive at the respective points u+ = 3.]6 and 2.24. 

Figure 3 shows the velocity of propagation of the gas front for various values of ~. 
The solid and dashed curves here have the same significance as in Fig. 2. In the given 
situation, a singularity of the isentropic model as E § 0 is the fact that the centered wave 
to the right of the plate degenerates into the characteristic curve. Here, obviously, uf § 
u+. It is evident from Figs. 2 and 3 that the disparity between the results obtained using 
conditions (2) and (3) increases with a decrease in ~. In the centered wave contiguous with 
the front the first Riemann invariant is preserved, i.e., u + 2a/ (• I) = r+ e u+ + 2a+/ 
(~ -- I). Consequentely, at the front, where af = 0, we have uf = r+. In the isentropic 
expansion scheme, i.e., with the application of condition (2), as the perforation ratio is 
decreased (~ § 0) the sound velocity tends to zero, and u+ tends to the maximum steady flow 
velocity. Inasmuch as a+ enters into r+ with the large factor 2/ (~-- I), the decrease of a+ 
prevails, and within the framework of (2) uf decreases as ~ § 0. On the other hand, by con- 
dition (3) the entropy s+ exceeds Sm = s_, the excess increasing with decreasing value of e. 
For this reason, even though u+ increases more slowly with decreasing ~ than in the case (2), 
this process is offset by the slower decrease of the sound velocity a+, which remains finite 
as s § 0. This is the reason for the slight increase of uf with decreasing perforation 
ratio. Of course, sudden expansion without the inception of compression shocks and, as a 
result, without any increase in entropy is impossible, although for E ~0.05, where experi- 
mental confirmation of the validity of (3) is lacking, the increase in the entropy can be 
much smaller than implied by the indicated condition. Moreover, with a decrease in E the 
effects of rarefaction of the gaswill inevitably begin to be felt. All this requires an 
extremely cautious attitude toward the results obtained as e § 0. 

In conclusion, we discuss the difference of the problem solved here from the problems 
treated in [2, 3]. The work reported in [2] was Concerned with the unsteady flow of gas into 
vacuum through a semipermeable screen. In that work, Of the conditions used above, only the 
first Eq. (]), i.e., the condition of conservation of mass flow, was used. On the other 
hand, the total entha!py and entropy of the gas vary during its flow through the screen in 
accordance with a scheme involving the following considerations. First, it is assumed that 
the mass flow of gas q ~ (pu)• is proportional to the differential pressure, i.e., q = a(p_ -- 
p+) with a constant proportionality factor a. In the case of a perforated panel or wall, the 
given relation with a depending on ~ can only be used for subsonic flow, which, however, does 
not occur in flow into vacuum. Second, in [2], in the two-parameter set of solutions with 
0 ~M_~i andM+ ~] (M = u/a is the Mach number) the parameter is chosen for which regions 
of sub- and supersonic flow do not exist to the left and right of the screen, i.e., u• = a T . 
The latter must clearly be regarded as a property of the screen. In the problem discussed 
above, u• = a• only in the absence of the plate (for s = I). 
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Finally, in the model proposed in [3] for the unsteady flow of a gas into vacuum 
through a perforated plate it is assumed that the parameters Pm, Pm, Um realized in the 
critical cross section of the perforation are the same as would occur for flow created by 
acceleration of the undisturbed gas in a transient rarefaction wave with subsonic velocity. 
To the left of the plate in this case is a region of subsonic flow with constant parameters. 
The intensity of the rarefaction wave propagation through the rest gas is determined from 
the condition of equality of the mass flow rates before the plate and in the critical cross 
section. In the region after the plate, as in [2], it is assumed that a flow region with 
constant parameters does not exist, i.e., u• = a• The system of relations at the plate is 
formulated in two ways, The first presupposes satisfaction of the two conditions (I) re- 
lating the cross sections m and +. However, the total enthalpy in the cross sections -- and 
+ can differ. The second approach is based on replacement of the second Eq. (I) by the mo- 
mentum conservation principle 

~(p + 9u2)~ -- ~ p  = (p + 9v~)~. 

Here the influence of fluid friction of the plate is introduced by the formula &p = Bq T~o 
with the fluid friction coefficient B and the temperature of the undisturbed gas To. 

We note that, in contrast with [I], in [2, 3] experimental confirmation is not given in 

support of the assumptions underlying these studies. 

The author is grateful to A. N. Kraiko and V. T. Grin' for their interest and useful 

discussions. 
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PRESSURE FLUCTUATIONS DURING FLOW AROUND BLUNT BODIES 

A. I. Shvets UDC 533.6.011 

At subsonic flight speeds the most intense vibrations develop during flow separation and 
the formation of local supersonic zones, while at supersonic speeds they occur in the inter- 
action of a shock with the boundary layer. The combination of intense pressure fluctuations 
and a relatively large velocity head at transonic speeds can lead to appreciable dynamic 
loads, and the abrupt rearrangement of the character of the flow changes the aerodynamic 
characteristics. We present data which illustrate some forms of fluctuating loads developing 
on aircraft components at both subsonic and supersonic flight speeds. 

I. Experimental Procedure. A cylindrical model of diameter d = 50 ~ and length I = 
200 mm was tested by mounting it at right angles to the flow on thin side plates fastened to 
the lower perforated wall of a wind tunnel. Measurements were made when the model was rotated 
about its axis by an angle ~. A spherical model of diameter 70 mm mounted on a base 15 mm in 
diameter was tested also. Pressure fluctuations on the spherical model were measured with 
three inductive pressure transducers. The angle ~ was measured by the rotation of the model 
support. 

The tests were performed in an intermittent type wind tunnel whose test section was 
600 • 600 ram in cross section. The Reynolds numbers, determined from the free-stream param- 
eters and the diameter of the sphere, were in the range Red = (0.6-1.5)'106 . 
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